
0 w
E P-PATR: A COMPILER FOR

@ UNIFICATION-BASED GRAMMARS

0 m Technical Note 449

w September 15, 1988

By: Susan Beth Hirsh
Artificial Intelligence Center
Computer and Information Sciences Division

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

This research was supported by the Department of the Navy under Contract
N00039-84-GO524 with the Space and Naval Warfare Syatems Command.

The views and condusious contained in this document are those of the author and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Defense Advanced b e a r c h Projects Agency or the
United States Government.

333 Ravenswood Ave. Menlo Park. CA 94025
1415: 326-6200 TWX: 910-373-2046 Telex: 334-486

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
15 SEP 1988 2. REPORT TYPE

3. DATES COVERED
 00-09-1988 to 00-09-1988

4. TITLE AND SUBTITLE
P-PATR: A Compiler for Unification-Based Grammars

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

106

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

P-PATR: A Compiler for Unification-Based
Grammars

Susan Beth Hirsh

September 15; 1988

Contents

1 Introduction a n d Motivations 4

2 Methods 5
2.1 Feature Structures as Prolog Terms : 5
2.2 Basic Compilation . 7
2.3 Leftcorner Parsing . 9
2.4 Epsilon Rules . 13
2.5 Lexical Organization . 15

3 T h e P-PATR System 17
3.1 Grammar Input . 17

3.1.1 Tokenization . 18
3.1.2 Translation . 19

3.2 Grammar Compilation . 24
3.2.1 Parameter Procwing . 24
3.2.2 Attribute Position Generation 25
3.2.3 Epsilon Precompilation 26
3.2.4 Compilation . 26
3.2.5 Lexical Compilation . 30

4 Conclusions 31
4.1 Further Work . 31

A User's Manual for the P-PATR System 33
A.l Starting Up the System . 33

A.l.l Loading Necessary Files 33
A.1.2 Trace Flag . 34

A.2 Compiling a PATR Grammar . 34
A.2.1 Grammar lnput . 35
A.2.2 Grammar Compilation . 35

A.3 Parsing a Sentence . 36
A.3.1 Loading the DCG . 36
A.3.2 Sentence Parsing . 36

A.4 Sample Session with the P-PATR System 38

B Sample Grammar and Prolog D C G 42

C Selected Code

Bibliography

Preface

1 owe a great deal to many people, both for this thesis and for my mental
well-being. Of course, my thanks go to Lauri Karttunen. The fact that this
document can be understood by anyone other than myself is due to his diligent
dissection of the presentation. I am also grateful to Fernando Pereira for his
wonderfuUy responsive answers to my never-ending questions. Hi enthusiasm
was quite infectious and kept me going when things looked bleak. I am deeply
indebted to Ivan Sag and Carl Pollard, members of my moral-support team, for
keeping me from giving up in times of crisis.

However, the person to whom I owe my most heartfelt thanks is Stuart
Shieber, head of my moral-support team. The existence of this document is to
a large part due to his encouragement and technical guidance.

Finally, I must thank my family, an important part of my l ie . T h e love and
support of my parents is a constant comfort. My brother, Haym Hirsh, ha . also
contributed to the completion of this work, from the pictures in the text to his
reassuring presence on the other end of the phone when I call.

This research was supported by the Department of the Navy under Contract
N00039-84-GO524 with the Space and Naval Warfare Systems Command.

The views and conclusions contained in this document are those of the author
and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the Defense Advance Research Projects Agency,
or the United States Government.

1 Introduction and Motivations

P-PATR is a compiler for unification-based grammars that is written in Quintus
Prolog running on a Sun 2 workstation. P-PATR is based on the PATR-11' for-
malism [14] developed at SFU International. PATR is a simple, unification-based
formalism capable of encoding a wide variety of grammars. As a result of this
versatility, several parsing systems and development environments based on this
formalism have been implemented [18,5]. P-PATR is one such system, designed
in response to the slow parse times of most of the other PATR implementations.

Most of the currently running PATR systems operate by inierpreiinga PATR
grammar. P-PATR differs from these systems by compiling the grammar into a
Prolog definite-clause grammar (DCG) [8].

The compilation is done only once for a given grammar; the resulting DCG
contains all the information in the original PATR grammar in a form readily
conducive to parsing. The advantage of compilation is that less work needs to
be done during parsing, as some of the necessary computations have already
been performed in the compilation phase.

The use of Prolog as the target language of the compiler is advantageous for
two reasons. F i s t , like PATR, Prolog uses unification as its method of opera-
tion. By compiling the PATR grammar into Prolog, P-PATR takes advantage
of the efficient implementation of Prolog unification. Second, the performance
of the resulting DCG can be improved further by compiling it with a Prolog
compiler.

This compilation, combined with the use of Prolog, gives P-PATR a speed
advantage over the other currently implemented PATR system.

The rest of this paper is divided into three parts. The first section discusses
the basic algorithm used in compiling the PATR grammar into a Prolog DCG.
The second section consists of a detailed description of the actual procedure
followed during the compilation. The appendix contains a user's manual for the
P-PATR system as well as a sample grammar and some selected Prolog code
from the system.

'Henaiorth ~ierrrd to simply w PATR.

4

2 Methods

What follows is a detailed explanation of the techniques used in compiling a
PATR grammar into a Prolog DCG. First, an explanation of the general mech-
anisms used in compiling a PATR grammar into a DCG is given. This com-
pilation scheme is then refined so that the DCG produced is equivalent to the
original PATR grammar.

2.1 Feature Structures as Prolog Terms

In Prolog, unification operates on terms, not on PATR feature structures. It is
therefore necessary to model PATR feature structures as Prolog terms to take
advantage of the Prolog unification mechanism.

Prolog terms differ from PATR feature structures in two major ways [14].
First, in a Prolog term a value is identified by its position, while PATR feature
structures identify a value by associating it with an attribute. For example, the
two Prolog terms

donot unify. ~ e c a u s e the order of the arguments is different, number(p1ural) is
matched against person(th i rd1 and the unification fails. The second difference
is that two Prolog terms unify only if they have the same number of arguments,
whereas two PATR feature structures may unify even if they differ in the number
of features. For example, the two terms

do not unify because the arities do not match. Thus, in representing a feature
structure a. a Prolog term, each structure must be given a fixed order and arity.

There are two methods generally used in modeling feature structures as
Prolog terms. They will be referred to as tailing and feature precompilation.

Tailing

The first method for converting feature structures to Prolog terms involves
the use of tail variables. Each feature structure is encoded as a Prolog term
of the formZ

'The Prolog kt notation i s used to mpmcnt a list with an uninabtiated tail vaMble (31.

[featurel: valuei, featwell: valueN 1 TI.

where an uninstantiated tail variable is placed at the end of the list. Then,
a. this structure is unified with new structures, the features in the new
structure are reordered in accordance with the features seen so far, and
any new features are unified with the tail variable. For example, feature
structures 1 and 2 are represented a. the Prolog terms3

[head: [agreement: Cnumber: p lu ra l ,
person: t h i r d I Ti1 (T21 (T31

[head:' [agreement: Cnumber: p lu ra l 1 T41 I T51 1 T61

and then, when unified, person: t h i rd unifies with the tail variable in
the agreement list, producing the new Prolog term

[head: [agreement: Cnumber: p lural ,
person: t h i rd I T i 1 I T21 1 T31

Feaiure Precompilaiion

The second conversion method involves a preliminary pass through the
grammar to determine the arity and composition of all complex feature
values. On the second pass, every attribute-value pair is placed in the
correct pasition and order with respect to the other features. If a feature
is missing from the structure, an uninstantiated variable is inserted in
its place. For example, from feature structures 1 and 2 the following
information is extracted

head can be followed by the feature agreement, and
agreement can be followed by the two features,

number and person, in that order.

These feature structures are converted into the Prolog terms4

[head: [agreement: [number: p lu ra l ,
person: third111

[head: [agreement: Cnumber: p lu ra l ,
person: X111,

3This is not quite sc~urale. Thmughout this paper f d l m s h c t u r c s am represented by
labeling the values with the attributce they represent, but only the value. of the attributes
m actually praent in the feature structures. The attributes m indudd for readability only.

'Variables am distinguished from atoms by an initid capital letter.

where the missing person value in feature structure 2 is represented by the
uninstantiated variable X. The two Prolog terms now unify successfully
to

Chead: [agreement: [number: p l u r a l ,
person: third]]]

P-PATR uses the feature precompilation method described above in encod-
ing the feature structures associated with the PATR grammar entries as Prolog
terms. When the unification list of a rule is processed during compilation, this
feature ;nformation is used in creating the feature structures. For example,
given the information extracted from feature structures 1 and 2, the unification

<X head agreement person> = CI head agreement person,

produces the following feature structures for X and Y

Chead: [agreement: [person: A , number: B l l l
Chead: [agreement: [person: A, number: D111,

where the values of the person attribute are unified and the indeterminate
values for number are added to complete the agreement features.

2.2 Basic Compilation

The compilation produces a DCG that has a one-to-one correspondence with
the original PATR grammar.

Grammar Rules

PATR grammar rules consist of a contextrfree phrase structure (CFPS)
rule augmented with a list of unifications. For example

S - NP VP:
<S head> = <VP head>
<VP head agreement> = <UP head agreement>.

The CFPS part of the rule is

and the unifications give the added information that the agreement fea-
tures of the VP and the NP must be the same.

DCGs are a natural extension of context-free grammars (CFG); a straight-
forward translation scheme is given by Pereira [7]. The constituents of a
DCG rule may be complex symbols, consisting o f a functor and a list of
arguments. In the translation of a PATR rule to a DCG rule, the CFPS
part of the rule provides the functors of the DCG ruIe, while the feature
structure information from the unifications is encoded as the arguments to
these functors. For example, the grammar rule just presented is equivalent
to the DCG rule5

~ (Chead : [agreement: Y11) -->
np([head: [agreement: Y11).
vp(Chead: [agreement: YII).

Letical Entries

PATR lexical entries consist of a word followed by a l i t of unifications.
For example

Word Uther:
<ca t> = NP
<head agreement person> = t h i r d
<head agreement number> = s ingu l a r .

This entry defines the word "Uther"; the unifications encode the informa-
tion that. 'Wther" is a third-person singular NP.

In translating a PATR lexical entry into a DCG rule, the category of the
word become the functor for the left-hand side (LHS) of the rule; its
argument list is derived from the list of unifications. The rightrhand side
(RHS) of the rule consists of the word itself. For example, the above
lexical entry is equivalent to the DCG rule

np(Chead: [agreement: [person: t h i r d .
number: singular]]]) -->

Luther].

The example just presented shows a very simple correspondence between
the PATR aod the DCG formalisms. For reasons explained in the next sections,
P-PATR actually uses a more complex compilation technique.

2.3 Left-Corner Parsing

The default parsing algorithm for DCGs supplied by Prolog is a topdown, left-
to-right, backtracking algorithm. A well-known problem with topdown parsers
is that left-recursive grammars can cause them to go into an infinite loop [I].
Because PATR rules are allowed to be left recursive, a compilation technique
must be applied that enables the Prolog DCG to handle such rules.

P-PATR compiles a PATR grammar into a DCG that uses a bottom-up
parsing algorithm. Bottom-up parsers have no problem with left recursion [I].
The particular parsing technique used is called lefbcorner parsing [ll].

The left corner (LC) of a CFG rule is the rirst symbol of the righbhand side
of the rule. For example, the LC of the rule

is the nonterminal NP. In LC parsing, each rule is identified through its LC.
The first word in the sentence functions as the initial LC key. The rules whose
LC match the key are extracted. The next word in the sentence becomes the
new LC key for satisfying the remainder of the right-hand side of these rules.
If the right-hand side of the rule is completely satisfied, the left-hand side of
the rule is substituted for the LC key and the process is iterated. For example,
given the CFG rules

(3) s - HP VP
(4) VP - v
(5) HP- H
(6) V - s l e e p s
(7) N - B i l l ,

the sentence "Bill sleeps" is parsed as follows:

LC key = " B i l l "
matches t h e LC of Rule 7 .
Rule 7 i s s a t i s f i e d

LC key = H
matches t h e LC of Rule 5,
Rule 5 i s s a t i s f i e d

LC key = NP
matches t h e LC of R u l e 3,
l e av ing t h e VF' of Rule 3 t o be s a t i s f i e d

LC key = "sleeps"
matches the LC of Rule 6 .
Rule 6 is s a t i s f i e d

LC key = V
matches the LC of Rule 4.
Rule 4 is s a t i s f i e d

Rule 3 is s a t i s f i e d ,
no more inpu'c.
parse successful

Thii parsing algorithm avoids the problem of left-recursive rules.6

The DCG produced by P-PATR is based on the implementation of the LC
algorithm in Mataumoto et al. [6]. Each PATR grammar rule of the type

is converted into a DCG rule of the form

lc(Ras i , ROO^) --> '

dorm(RBS2). . . . , dorm(RESN).
Ic(LBS, Root).

where LES and MSl through MSN constitute the feature structure information
from the unification l i t of the rule and Rooi is the feature structure of the
constituent currently being parsed. In the limit case, Rooi and LHS are the
same: everything is its own LC.

lc(Root. Root) --> 0.

For example, consider a CFG for noun phrases consisting of a rule

PP - Det B

and two lexical items: the :Det and gir1:N. The corresponding DCG rule pro-
duced by P-PATR is

l c (de t . Root) -->
dom(n),
lc(np. Root).

'Epsilan rules atill p- s pmblrm, but they are taken care of separately (Section 2.4).

To understand how this rule is used by the Prolog parser, we first need to define
the predicates down and l e a f :

doun(Cat) -->
l e a f (Child) ,
l c (Chi ld , Cat)

leaf(Chi1d) -->
[Word].
{lex(Word, Child)).

The two words in the grammar are defined by the following Prolog clauses

l ex (the , de t)
l ex (g i r1 , n)

Let us now see how the string "the girl" is parsed as an NP by using this
DCG version of the original CFG. The parse is initiated with the call

This results in the call

which consumes the word 'the" and binds the variable Child to the word's
category det . The next step is to evaluate the call

by finding a match for this clause among the LC rules and satisfying the right-
hand side of the LC rule. In this case, we need to satisfy the calls

The first clause triggers another caU to

which now consumes the word "girln and binds Child to n and the call

which is immediately satisfied because it is an instance of the rule

leaving the call

to be satisfied in the same way.

The flow of the computation can be pictured as the tree

leaf (det) lc(det,np)

the

leaf (n) C 1

girl c 1

This obviously differs from the usual parse tree,

Det

the girl

because of the way the LC algorithm uses the rules. The standard phrase-
structure tree can easily be produced as a side effect of the parse, if desired.

The above discussion is an oversimplification. In actuality, the values of
the variables Root, Cat and Child are feature structures rather than atomic
category symbols. For example, the grammar rule presented above becomes the
new DCG rule7

l c ([ca t : np, head: [agreement: Y11. Root) -->
dorm([cat: vp, head: [agreement: Y11).
l c ([cat: s , head: [agreement: Y11). Root),

and the lexical entry for 7Jthern becomes the Prolog clause

lex(uther , [cat: np,
head: [agreement: [person: t h i r d ,

number: singular11 1.

A PATR grammar is compiled into a DCG of the form just presented. The
compilation technique is revised slightly in the next section to atlow for the
epsilon rules that produce empty constituents.

2.4 Epsilon Rules

Epsilon rules in a CFG are of the form

'This occurs dter feat- in(orms*ion co-nding to lhc catcgorin of the nontcnnbls
in added to the feat- struct- (Section 3.1.2).

This type of rule can pose a problem in applying the compilation technique
described above. In LC parsing, a rule is keyed by its left corner. If the LC of
a rule can be expanded to an empty string, the rule in effect acquires a second
left corner.

For example, consider the rules

Because B can be expanded by rule 9 to an empty string, rule 8 has two left
corners: B and A. For the compilation technique described above to work, each
passible LC has to be recognized before a rule is compiled.

The problem is solved in two stages. First, all epsilon rules are extracted
from the grammar and put into a separate list. Then all of the remaining rules
are examined one by one. If the LC of a rule

can be null, a new rule of the form

is added to the grammar and subjected to the same test. For example, rule 8
above gives rise to the new rule

by virtue of the possible expansion of B in rule 8 by rule 9.

The technique outlined above is easily extended t o PATR grammars. I n a
PATR grammar, an epsilon rule is of the form

A + :
(Definition).

In eliminating the epsilon rules, the unification information must be taken into
account. For example, for the PATR grammar rules

rule 10 gives rise to the new rule

2.5 Lexical Organization

We now turn to lezicol iemploies and lezicol rules. Lexical templates are named
feature structures and lexical rules are named transformations on feature struc-
tures. Both types of entries may include references to templates and rules in
their definition. Because templates and rules may be referred to before they are
defined, compilation takes place in two stages.

Compiloiion: Firsi Stage

Each lexical entry of the PATR grammar is compiled into a temporary
DCG rule of the form

word(Word. Fea tures t ruc ture) : - . . .
The right-hand side of a temporary DCG rule typically contains references
to the lexical templates and lexical rules that occur in the entry. These
references cannot be evaluated, however, until the first stage is completed.
The references are of the form

template(Aame. I n . Out)

lexmle(Hame. I n , Out),

where In is the input feature structure to a rule or template, and Out is
the output feature structure from the rule or template.

For example, the lexical entry

Word Uther:
noun

is compiled into the temporary DCG rule

uord(uther , FeatureStmcture):--
template(noun, In . Fea tures t ruc ture) .

Compilation: Second Stage

Once the first stage has been completed, the definitions of the lexical rules
and lexical templates reside in the Prolog data base (Section 3.2.4). The
temporary rules produced in the first stage of compilation could be used
by the parser, but this would be inefficient because the lexical templates
and rules would be executed each time they are referred to.

At this point, each lexical entry is executed once by Prolog, evaluating the
actions of the rules and templates, and the new feature structure produced
isused in converting the entry to its final form.

For example, the temporary DCG rule

word(boy, Fea tu r e s t ruc tu r e) :--
template(noun. I n . Fea tu r e s t ruc tu r e)

produces the final DCG rule

lex(boy, [cat : nl))

once it is executed.

compilation module

input module

I PATR Grammar /

Figure 1: Flow Diagram of P-PATR

3 The P-PATR System

This section provides a stepby-step account of the compilation technique used
by P-PATR. An overview of the process is given in Figure 1. As shown in
the diagram, compilation is accomplished in two phases: gmmmar inpui and
gmmmar compilaiion. The grammar input phase produces an intermediate
representation of the PATR grammar that is used in the compilation. During
compilation, information is both written to a file reserved for the output DCG
and asserted into the Prolog data base. The information in the data base is
accessed as the compilation proceeds.

3.1 Grammar Input

This phase takes a set of text files containing a PATR grammar and converts i t
to a Prolog clausal form used by later phases. The grammar is entered in two
distinct steps: iotenizaiion and iranslaiion.

3.1.1 Tokenization

Each entry in the PATR'grammar is first tokenized and then translated into
clausal form. There are six claases of tokens recognized by the P-PATR tok-
enizer: identifiers, special chamcters , terminators , white-space characters, com-
ments and strings. Each token type is briefly described below.

Identifiers

Identifiers are tokens that consist of any alphanumeric characters: a-z,
A-2, and 0-9; and any special intraword characters: underbar (-), asterisk
(*), apostrophe ('), questionmark (?), and backquote (I) .

Special Chamcters

Special characters are tokens consisting of a single character: colon (:),
number sign (#), slash (I), arrow (-), square brackets (C, 1), angle
brackets (<, >), braces ({, I) , parentheses ((,)), comma (,), equal sign
(=), or dash(-). A sequence of tokens consisting of a dash (-) and a right
angle bracket (>) is treated as the single token: arrow (-).

Terminators

Terminators: period (.) and endaffile, signal the end of a token stream.
Terminators are considered a special case of special characters and are
treated as the single tokens: period (.) and end-offile.

White-space Chamcters

White-space characters: space, newline, tab and formfeed are ignored.

Comments

Comments, which begin when the single-token semicolon (;) is encountered
and continue to the end of the line, are ignored.

Strings

Strings are any list of characters enclosed in double quotes (Iv). Embedding
of double quotes inside a string is done by using a sequence of two double
quotes ("").

In all tokens, except for strings, no case distinction is made. All characters
are converted to lowercase. Any characters that are not legal in a P-PATR
token are ignored and a warning is issued.

3.1.2 Translation

The stream of tokens produced by the tokenization process is now translated
into clausal form. Each type of entry in the PATR grammar is translated into
a form that will be mast appropriate in subsequent compilation (Section 3.2),
as follows:

The only type of control statement is the input statement. Input statements
are of the form

Input (InpuiFile).

When an input statement is encountered during translation, the current input
file is temporarily replaced by the file specified in the statement. Once this new
file is completely read in, the old input file is restored.

For example, the input

Input ' testgram'

causes the current input stream to becoine the file TESTGRAM.

Pammeiers

P-PATR recognizes two grammar-dependent parameters: start symbol and at-
tribute order. These parameters are set by statements that must appear in the
grammar before any rules or lexical items are encountered. Other parameterss
are ignored.

The parameter statements are processed as follows:

Start Symbol

The start symbol is defined by a statement of the form

Parameter: S t a r t Symbol i s (Symbo9

The start symbol for the grammar is recorded for use in further compila-
tion as a clause of the form

parameter(start(Symbo1)).

sTh- e m scvcral other psramctvs thst can be speciticd in a PATR grammar, but their
information k not utilized by thi. implmrmtation.

Attribute Order

Attribute order is specified ar follows

Parameter: a t t r i b u t e order is (Attributes).

This is converted to the Prolog clause

where L i s t corresponds to a list of all attributes in the order specified.

For example, the input

Parameter: a t t r i b u t e order is ca t head.

produces the clause

Grammar Rules

The format for PATR grammar rules is

Rule { (Description)]
(LH.5) - (RH.5):
(Definition).

In translating the rule into clausal form, all nonterminals are replaced by vari-
ables, which are used during compilation. Grammar rules are translated into a
clause of the form

rule(LES, MS. Def)

where LHS is a variable associated with the left-hand side of a rule, RHS is a list
of variables associated with the right-hand side of the rule, and Def is a list of
specifications defining the rule.

In the original PATR grammar, the category information of a nonterminal
can be omitted from the list of unifications because it is added automatically
during grammar translation. For example, the grammar rule

Rule { sentence formation]
S - HP VP:

<S head> = <VP head>
<S head form> = f i n i t e
<VP subcat first> - <BP>
<VP snbcat rest> = end

produces the clause

rule(S. CHP. VPI , [[S, ca t l = s.
[UP. c a t l = np,
CVP, c a t l = vp.
CS, headl = [VP, headl .
IS, head, f o n d = f i n i t e ,
[VP, subcat. f irstl = [NP] .
[VP, subcat , r e s t] = e n d) .

where the unification information

[S, c a t l = s

[UP. c a t l = np
CVP, c a t l = vp

is added to the list of unifications. The only exception is the nonterminal X
(with or without a subscript). If this appears in a grammar rule, no category
information is added, thus allowing expressions of any category to appear in
this position.

P-PATR follows the 2-PATR [IS] convention for distinguishing among con-
stituents that have the same category. This is accomplished by means of numeric
tags. For example, if two constituents in the same rule are referred to as VP-1
and VP2, they are both of category VP.

Lezical Items

Each type of lexical item in a PATR grammar is translated accordingly:

. Lezical Eniries

The format for lexical entries is

Word (Word):
(Definiiion) .

In translating a lexical entry into clausal form, the information from the
original PATR entry is left unchanged. Thus, lexical entries are translated
into clauss of the form

where Yord is a word being defined, and Def a list of specifications defining
the word.

The system augments each lexical entry with two new features: l e x and
sense. It is assumed that the lexical entry does not already contain this
information; otherwise it will be duplicated. The l e x value for a lexical
entry is the word itself. The sense value is the word concatenated with
a number that specifies how many previous definitions of this word have
occurred in t h k grammar. For example, given the entry

Yord Uther:
<ca t> = AP
<head agreement gender> = masculine
<head agreement person> = t h i r d
<head agreement number> = s ingu la r
<head t r a n s > = Uther.

P-PATR produces the clause

lex(u ther . [Clexl = u t h e r ,
[sense] = u the r ,
[cat] = np.
[head, agreement, gender] = masculine,
[head. agreement, person] = t h i r d .
b e a d . agreement, number] = s ingu la r ,
b e a d , t rans] = uther l .

If there already exists one previous definition for the word "Uther", the
value for the sense feature in the second definition would be uther2.

Lezicol Temploies

Lexical templates are of the form

Let (Templnie) be
(Dqfiniiion) .

In translating a lexical template into clausal form, the information from
the original PATR lexical template is left unchanged. Thus, lexical tem-
plates are translated into clauses of the form

t emplat e(Aame. Def) .
where Bame is the name of a lexical template being defined, and Def a list
of specifications defining the template.

For example, the template

Let verb be
<cat> = V .

produces the clause

Lerical Rules

Lexical rules have the form

Define (Rule) a s
(Definit ion).

In the clausal-form encoding of the lexical rule, the i n and out attributes
are replaced by variables, which are used during compilation. Thus, lexical
rules are translated into clauses of the form

lexl-ule(Hame. In. Out, Def)

where Name is the name of a lexical rule being defined, I n is a variable
associated the with the input to the rule, Out is a variable associated with
the output of the rule, and Def is a list of specifications defining the rule.

For example, the rule

Define agentlesspassive as:
<out ca t> = < i n ca t>
tou t subcat> = < i n subcat r e s t >
<out head agreement> = < i n head agreement>
<out head aux> = < i n head a u >
<out head t&s> = <in head t rans>
<out head f o m > = pass ivepar t ic ip le .

produces the clause

lexl-ule(agentlesspassive, In , Out.
[[Out, ca t l = [In, c a t l .

[Out, subcatl = [In, subcat. res t] .
[Out, head, agreement] = [In, head, agreement],
[Out, head, auxl = [In, head, auxl,
[Out, head, t r ans l = [In, head, t r a n s l ,
[out, head, f o n d = pass ivepar t ic ip le l) .

3.2 Grammar Compilation

This phase takes a tent file containing a PATR grammar in clausal form and
compiles it into a Prolog DCG. Grammar conlpilation is accomplished in five
distinct phases: parameter processing, aiiribuie posiiion genemiion, epsilon yre-
compilaiion, compilaiion, and lezical compilation.

3.2.1 Parameter Processing

This phase processes the parameter statements specified in !.he PATR grammar.
Param:.ter statements must occur first in the griunnlar to ellsure thtir ,IS.: in
the entire compilation.

The two types of parameter statements are treated as follows:

Start Sgmbol

A statement of the form

is asserted into the Prolog data base and written to the DCG file as

start (Symbol).

Aiirihuie Order

The attribute order is initially represented in clausal form as

where L i s t is a list of attributes with a specified order.

For each attribute in the list, a clause is asserted into the Prolog data
base specifying the order of that attribute. This information is used in
maintaining the specified order during output of the feature structures.

This information is asserted into the Prolog data base as

print-order (Attr ibute, Posit ion).

where Attr ibute is an attribute from the list of attributes, and Pasition
is the pcsition of that attribute in the l i t of attributes.

For example, given the parameter statement

parameter(at tr ibntes([cat, h e a d) .

the clauses

are asserted into the Prolog data base.

3.2.2 At t r ibute Position Generation

In PATR, feature are pairs of attributes and values. The value of an attribute
can bc oueof three types: indeterminate, atomic, and complex. A complex value
is a set of attribute-value pairs. In the following discussion only the complex
values contribute information about the attributes; therefore, the other types
of values are not discussed.

This phase computes the arity of each complex attribute value and places
the features in a fixed order. The information is used in the conversion of PATR
feature structures to Prolog terms (Section 2.1).

For each attribute in a PATR grammar, a list is compiled that consists of
all the attributes that can follow that attribute in a path specification. For
example, given the lexical template

template(singular. [[head, agreement, number] = s ingn la r l) .

the information recorded for the attribute head is that it can be followed
by agreement in a path specification. The information that the attribute
agreement can be followed by number is also recorded.

Once all information on the attributes has been compiled, this information
is translated into clausal form and is asserted into the Prolog data base and
written to the DCG file as

feature-order(Attribute, Features, Variables)

where At t r ibute is the attribute currently being described, Features is a list
of pairs consisting of an attribute and a unique variable representing the value
of that attribute, and Variables is a list of the variables in Features.

For example, from the above template the following clauses are generated
and avserted into the Prolog data base:

f eature-order(main. Chead:X] . [XI)
feature-order(head, [agreement :Y]. CY1)
f eatme-order(agreement . hmber :ZI . [ZI 1.

A dummy attribute main is created to notate those features that can occur as
the first feature in a path specification.

Since the list Features is used during the output of the feature structures,
the order of the attributes must reflect the order specified in the parameter
statement. Thus, the list is reordered. to reflect the specified order. Any at-
tributes whme order is not determined are just added to the end of the list of
features.

3.2.3 Epsilon Precompilat ion

This pass through the PATR grammar precompiles epsilon rules.

Epsilon rules are represented in clausal form as

where the grammar rule has no right-hand side. AI I other grammar entries are
ignored during this pass.

An epsilon rule is compiled into a DCG rule by applying the unification
equations attached to the rule, thereby producing a feature structure associated
with the rule (Section 2.1). The compiled epsilon rule is then asserted into the
Prolog data base and written to the DCG file as

wherr LHS is the feature structure associated with the rule.

For example, the epsilon rule

rule(Det. 0, [[Det, head, agreement, number] = p lu ra l])

is outputted as

n u l l ([cat: d e t . head: [agreement : [number: p lura l]] 1) .

3.2.4 Compilation

This pass through the PATR grammar uses the information produced in the
previous phases to generate a DCG rule for each grammar entry. These DCG
rules are written t o the DCG file (grammar rules) or recorded in the data base
to be further processed during the second compilation stage (lexical items).

Each type of grammar entry is compiled into a DCG rule as follows:

Grammar Rules

All of the unification equations in the grammar rule are applied (Section 2.1),
producing the feature structures associated with the rule. For example, the LHS
and RHS variables of the rule

rule(VP, [VI , [CVP, c a t l = vp,
CV, c a t l = v.
CVP, h e a d = CV, head],
CVP, subcatl = V subcat l l)

become

VP becomes [cat: vp
head: X
subcat: Y 1

V becomes [cat: v
head: X
subcat: Y l

These feature structures, together with the rule itself, are now compiled into
a DCG rule in left-corner format (Section 2.3).

At this point, the solution to the problem caused by epsilon rules is applied
(Section 2.4). As a result, one rule may expand to a set of rules. These rules
are written to the DCG file in a form that is slightly more complex than that
presented in Section 2.3

lc(RHS1. Parent, Branchi. Tree) -->
dovn(RBS2, Branch~) , . .. , dorm(RBSN, BranchA).
lc(LBS. Parent, NewTree. Tree)

where RBSi through RBsN are the feature structures associated with the
right-hand side of the rule, Parent is the feature structure associated with
the left-hand side of the rule, Branchi through BranchN are the parse trees
associated with the right-hand side of the rule, Tree is the parse tree associated
with the left-hand side of the rule, and NewTree is the parse tree associated with
the entire rule.

For example, the rule presented above becomes the DCG rule

lc([cat: v.
head: X.
subcat: Yl .

Parent, Branchl. Tree) -->
lc([cat: vp.

head: X,
subcat: Y] ,

Parent, vp(Branch1). Tree).

Lexical I tems

Each lexical item in the grammar is compiled into a DCG rule. These rules,
unlike grammar rules, are not written directly to the DCG file. They are asserted
into the Prolog data base to be compiled and written to the DCG file in a later
stage.

Each type oflexical item is asserted into the Prolog data base with adifferent
functor but they are processed in the same way. First, aU of the specifications
in the definition are processed. If a specification is a unification, it is applied
(Section 2.1); if it is a reference to a lexical rule or lexical template, the reference
is put into the form

template(Name, In , Out)

lexmle(Name. In , Out),

where I n is the input feature structure to a rule or template, and Out is the out-
put feature structure from the rule or template. These references are expanded
in the second compilation phase.

Lezical Eniries

Lexical entries are asserted into the Prolog data base in the form

sord(Word, Featurestructure) :--
Def.

where Word is the name ofalexical entry, Featurestructure is the feature
structure associated with the lexical entry, and Def includes references to
rules and templates producing Featurestructure.

For example, the lexical entry

lex(uther, [Lex = uther], [sense = u t h e r l l , n o d)

is compiled into

word(uther , FeatureStructure) : --
template(noun, [lex: u the r , sense: u t h e r l l .

FeatureStructure) .
Lezical Templaies

Lexical templates are asserted into the Prolog data base in the form

templateolame. Featurestructure):--
Def .

where Name is the name of a lexical template, FeatureStructure is the
feature structure associated with the template, and Def includes references
to rules and templates producing FeatureStructure.

For example, the lexical template

t'emplate(mainverb, [[head, aux = f a l s e] , verb])

is compiled into

template(mainverb, Featurestructure):--
template(verb. b e a d : [aux: fa l se]] ,

Fea tures t ruc ture) .

Lezical Rules

Unlike lexical entries and lexical templates, lexical rules are not allowed to
contain references to rules or templates in their definition. Thus, lexical
rules are asserted into the Prolog data base in the form

lexlule(Name, I n , Out).

where Name is the name of a lexical rule, I n is the feature structure associ-
ated with the input to the rule, and Out is the feature structure asociated
with the output from the rule.

For example, the lexical rule

l ex lu l e (nom, [[Out, headl = [In, headl. [Gut, cat1 = n l)

is compiled into

lex lu le (nom, [cat : v , head: XI, [cat: n , head: XI).

3.2.5 Lexical Compilat ion

Lexical entries are initially compiled into DCG rules with explicit calls to the
templates and lexical rules they utilize. Because these calls are re-executed
each time they are encountered, the system would be inefficient to use. At
the second stage of compilation, these references are eliminated by merging the
corresponding feature structures with the rest of the definition.

Once this process is completed, the DCG rules for the lexical entries no
longer contain any references to lexical templates or rules; therefore, the rules
and templates need not.be recorded in the DCG file.

The new lexical entries are written to the DCG file as

lex(Uord, Fea tu re s t ruc tu re) .
For example, the initial DCG rules

iord(boy, Y):-
template(noun, X . Y).

template(noun, X , Y):--
Y = [cat: nl .

produce the new DCG rule

lex(boy. [cat: n l) .

Sentence I Parse time (in seconds)

4 Conclusions

U ther sleeps
Uther storms Cornwall

-

To test whether the P-PATRsystem lives up to the expectations that motivated
its development, it will be necessary to compare it with the two other currently
running PATRsystems: DPATR [5] and ZPATR [la]. Because of disparities in
the versions of the PATR formalism assumed by each system, accurate statistics
are not presently available, but the preliminary results seem promising.

0.066
0.067

Sample execution statistics can be seen in Table 1. These are the execution
results -from the DCG produced by P-PATR, using as input the grammar in
Section B. It is easy to see from these statistics that a DCG produced by
P-PATR is a speedy parsing tool.

Table 1: Execution Statistics

Knights sleep
Cornwall is stormed
A knight storms Cornwall

4.1 Further Work

0.084
0.1
0.1

P-PATR is far from complete. Changes are being made to improve the sys-
tem's performance and expand its capabilities. These enhancements include
the following:

Improved Parser Performance

Because Prolog uses a depth-first control strategy, a DCG generates the
first parse for a sentence quickly, but when all parses must be produced, the
necessary backtracking slows the parse down significantly. To solve this
problem, predictive [9] capabilities will be added to P-PATR to eliminate
some ofthesuperfluous backtracking so that all parses can be found faster.

Compaiibilify un'fh the Other PATR Systems

To allow better comparisons of performance, it would be desirable to be
able to run the same grammar on P-PATR as on the other two systems
discussed above. Some work is currently being done 1161 on developing a
standard specifying a single version of the PATR formalism to which all

PATR systems would conform. Once this is done, the same grammar can
be used with equal ease on all PATR systems.

Morphological Analysis

P-PATR does not currently perform morphological analysis. For each form
of a lexical entry in a PATR grammar, a separate entry in the grammar
must be present. By encorporating the work being done on morphological
analysis in the PATR framework [2] into P-PATR, only the stem forms of
the lexical entries need be entered into the lexicon.

A User's Manual for the P-PATR System

A.l Starting Up the System

To start P-PATR, load the file LOADPATRPL into the Prolog data base.g This
file loads the rest of the system and initializes all execution flags.

A.l.l Loading N e c e s s a n Files

The P-PATR system consists of three basic modules: READPATR.PL, COM-
PILEPATR.PL and PATRLIBFLARY.PL. Each of these modules is in turn di-
vided further into submodules, which are loaded by their parent module. A
complete list of all files that must reside in the Prolog data base for compilation
to proceed is given below.

Thii module includes all files necessary for translating a PATR grammar into
clausal form. The files are:

READTOKENSPL: Reads in a PATR rule and returns it as a list of
tokens.

READPATR.PL: Takes a list of tokens and translates it into clausal form.

This module includes all the files that are necessary in converting a clausal
representation of a PATR gammar to a Prolog DCG. The files are

COMPILEPATR.PL: Compiles a clausal form into a DCG.

READRULESPL: Reads in a list of PATR rules.

PAFLAMETERS.PL: Records the information contained in the parameter
statements.

PATHS.PL: Compiles all information on the position and order of the
features.

OLoading a file into Pmlog involva either compiling or interpreting that file. The cumnt
implementation compila thue f i l s , but the system could cluily be modified Lo interpret than.
iI daLed. The difierencc is that it t & ~ l longer Lo compile than to interpret 8 Prolog Me, but
e compiled file execute much faskr.

r EPSILONS.PL: Preprocesses all epsilon rules.

COMPILEGFiAMMAR.PL: Performs the actual compilation of the gram-
mar entries.

UNIFY.PL: Applies the unification equations constraining a rule.

COMPILELEX.PL: Compiles all lesical entries.

PATRLIBRARY .PL

This module consists of a single file that contains predicates common to all of
the modules. The predicates included perform basic operations needed by the
entire system.

A.1.2 Trace Flags

In LOADPATR.PL, there are four execution flags that can be toggled by the
user:

t r a c e k p u t (default no): Yes prints out the clausal representation of
. each PATR rule as it is processed in the grammar input module.

t race-paths (default no): Yes prints the feature information compiled
during execution of the attribute position generation module.

t r a c e r d l e s (default no): Yes prints out each DCG rule as it is processed
in the compilation module.

l o a d p a r s e r (default yes): Ao suppresses the loading of the compiled
DCG after compilation.

To change the values of any of the execution flags, the user must modify the
values in LOADPATRPL."'

A.2 Compiling a PATR Grammar

Once all of the necessary files reside in the Prolog data base, the system is ready
for use.

"The d u e can a h be Fhanged later by means of the Pmlog predicates abolish and
user& [3].

A.2.1 G r a m m a r I n p u t

The file to be compiled must first be translated into clausal form by a call to
the grammar input module. The calling sequence is

where the name of the file to be compiled can be any Prolog atom or string [3]

The grammar input module then translates the file into clausal form and
puts the output into a new file whose name is that of the initial file with the
new file type extension PTRP. When the input module is invoked, it displays
the message

a , Reading ..."

and, once input is completed, the execution time (in seconds) of the input
module is printed.

Fbr example, the file DEMOGRAM.PATR is translated into clausal form
through the call

producing the new file DEMOGRAM.PTRP.

A.2.2 G r a m m a r Compilat ion

Once the PATR grammar is in clausal form, it is compiled into a Prolog DCG
by a call to the grammar compilation module. The calling sequence is

where the file-type extension of the file name may be omitted, as i t is assumed
' to have the extension PTRP.

The grammar compilation module then compiles that file into a DCG and
puts the output into a new file whose name is that of the initial file with the new
He-type extension DCG. When the compilation module is invoked it displays
the following

' 'Compiling . . . ' '

and, once compilation is completed, the execution time (in seconds) of the com-
pilation module" is displayed.

For example, the file DEMOGRAM.PTRP is compiled through the call

producing the new file DEMOGRAM.DCG.

A.3 Parsing a Sentence

A.3.1 Loading t h e DCG

Once the PATR grammar is compiled, the DCG file is loaded into the P rw
log data base.'' When loaded, the DCG file itself loads a support module
PATRSUPPORT.PL containing additional predicates that are needed in pars-
ing. PATRSUPPORT.PL also loads a submodule PP.PL that contains a feature
structure pretty printer. as well as submodule READIN.PL that includes asen-
tence reader. In all, the files that must reside in the Prolog data base before
parsing can proceed are

File.DCG: DCG file produced by ,compilation module.

PATRSUPPORT.PL: Support module for the parser.

PP.PL: Feature structure pretty printer.

READIN.PL: Sentence reader.

A.3.2 Sentence P a n i n g

Once all necessary files are loaded, sentences can be parsed by entering the
statement

pa t r .

The parser is now ready for input.

"This is not completely accurate. The ex-tion time of the compilation module is dir
dawd to two stem. F h t . the execution time of the com~fiilalion itsellis displayed and if the . ~ . .
loahparser execution &g har been toggled on, a second execution time ir displayed that
--on& to the loading time.

"This uur be done by toggling an execution flsg or by loading it mmually into the Prolog
data h e .

Sentence I n p u t

The input environment consists of an input loop for the sentences: Each sentence
entered at the prompt I':" is parsed. End of input is signaled by the command
"control-d" entered a t the input prompt.

Parser O u t p u t

Once a sentence is parsed, four pieces of information are returned by the parser:

Number of parses

The number of pars- for the sentence.

Ezecution Lime

The time (in seconds) that i t took to parse the sentence.

Parse tree

A parse tree is displayed for each of the pars- for the sentence. The parse
tree is represented as a parenthesized list.

For example, for the sentence Vthe r sleeps" the parse tree might be

Feature structure corresponding to the sentence

A feature structure for each of the pars- for a sentence is displayed as an
attribute-value matrix.

For example, a possible feature structure associated with the sentence
Wther sleeps" is represented as

[cat : s
head: [form: f i n i t e

t r a n s : [pred: s l eep
argl: uther l

aux: fa l se11

A.4 Sainple Sessioil with the P-PATR System

The following is a transcript of a session with P-PATR, using the grammar in
Section B.

Quintus Prolog Release 1.6 (Sun)
Copyright (C) 1986, quintus Computer Systems. Inc.

All rights reserved.

I ?- compile(1oadpatr).
[pp.pl compiled (7.350 sec 1848 bytes)]
beadin.pl compiled (2.450 sec 964 bytes)]
[patrsupport .pl compiled (18.017 sec 5552 bytes)]
1patrlibrary.pl compiled (2.100 sec 728 bytes)]
beadtokens .pl compiled (9.634 sec 2968 bytes)]
beadpatr.pl compiled (28.716 sec 9948 bytes)]
beadrules.pl compiled (1.067 sec 432 bytes)]
Cpaths.pl compiled (12.717 sec 3700 bytes)]
[epsilons.pl compiled (1.317 sec 620 bytes)]
[parameters.pl compiled (1.850 sec 496 bytes)]
[compilegrammar.pl compiled (5.483 sec 1520 bytes)]
[compilelex.pl compiled (0.634 sec 244 bytes)]
[unify .pl compiled (3.950 sec 900 bytes)]
[compilepatr.pl compiled (29.833 sec 9388 bytes)]
1loadpatr.pl compiled (79.850 sec 26588 bytes)]

Reading ...
Runtime = 11.899994

Compiling . . .
Runtime = 5.633995

Loading ...
Csample.dcg compiled (20.633 sec 3728 bytes)]

Yes
I ?- patr.
I: Uther sleeps.

Runtime = 0.066000

Analysis # I:

Parse Tree = s(np(uther),vp(v(sleeps)))

Ccat: s
head: [form: finite

trans: [pred: sleep
argl: utherl

aux: false11

Number of Parses = I
I : Cornwall is stormed.

Runtime = 0.100000

Analysis # I:

Parse Tree = s(np(cornwal1) .vp(vp(v(is)) .vp(v(stormed))))

Ccat: s
head: [form: finite

trans: Cpred: storm
arg2: cornwalllll

Number of Parses = 1
I : Knights sleep.

Runtime = 0.084000

Analysis # I:

Parse Tree = s(nP(nom(knights)).vp(v(slee~)))

Ccat: s
head: [form: finite

trans: Cpred: sleep

argi : knights]
aux: f a l s e l l

Number of Parses = 1
I : A knight storms Cornwall.

Runtime = 0.100000

Analysis # 1:

Parse Tree = s(np(det(a) ,nom(knight)),
vp(vp(v(storms)) ,np(cornwall)))

Ccat: s
head: [form: f i n i t e

t rans: [pred: storm
argi : knight
arg2: cornwalll

aux: f a l s e l l

Number of Parses = 1
I: Uther storms Cornwall.

Runtime = 0.067000

Analysis # 1:

Parse Tree = s(np(nther1 ,vp(vp(v(stoms)) ,np(cornwdl) 1)

Ccat: s
head: [form: f i n i t e

t rans: [pred: storm
argl : nther
arg2: cornwalll

aux: f a l s e l l

number of Parses = 1
I : Uther sleep.

Runtime = 0.050000

*** Cannot parse Cuther,sleepl
I : A knights storm Comwall.

Runtime = 0.050000

*'** Cannot parse Ca,knights, stori.comwa1~
I : -D
yes
1 7- halt.

[End of Prolog execution 1

B Sample Grammar and Prolog DCG

; ; ; =========-=======-=-===-==-= -=== ---====== -
... ,., Demonstration G r a m m a r
; ; ; (adapted from Sample G r a m m a r 4 in Shieber 's book on unif ica t ion 1141) ...
S P ,

;;; Includes subject-verb agreement,, complex subcategorization, logical-form construction,, l ex ica l organization by templates ... ,,. and l e x i c a l rules . . .=====a====--=========--=====-----========-=--= ,,.

Parameter: S t a r t Symbol is S.

Parameter: Attribute order is c a t l ex sense head
subcat f i r s t r e s t
form agreement person

number gender
t r a n s pred a r g l a r g 2 .

. . .======------=L---==---====

. s s G r a m m a r Rules . . . -=-== = ---- - -
3 , .

-=-----=-=-=====

Rule {sentence f ornation?

<S head> = <W head>
<S head f o m > = f i n i t e
<IT subcat f i r s t > = <WP>
<IT subcat r e s t > = end.

Rule Cnp f ornation?

WP -> Det Horn:

Rule {plural nouns?

Det -> :

<Det head agreement number> = plural . '

Rule { t r i v i a l verb phrase}

Rule Ccomplementsl

CVP-1 head> = <W-2 head>
<W-2 subcat f i r s t > = <W-1 subcat f &st>
CVP-2 subcat r e s t f i r s t > = <X>
CVP-2 subcat r e s t r e s t > = <W-1 subcat r es t> .

. . .---- .., - ======= -===--=--==

... . . . Definit ions

L e t Verb be <cat> = v.

Let Fini te be.Verb
<head f om> = f i n i t e .

Let Iionfinite be Verb
<head form> = nonfinite.

Let ThirdPerson be (subcat f i r s t head agreement person> = t h i r d .

let Singular be <subcat f i r s t head agreement number> = singular.

Let Plural be tsubcat f i r s t head agreement number> = plural .

Let Thirdsing be F in i t e
ThirdPerson
Singular.

Let Hainverb be Verb
<head aux> = f a l s e .

Let Transitive be HainVerb
isubcat f i r s t ca t> 5 UF'
iaubcat r e s t f i r s t ca t> = UF'
tsubcat r e s t r e s t > = end
a e a d t r a n s a rg l> = (subcat f i r s t head t r a m >

<head t r ans arg2> = <subcat r e s t f i r s t head t rans) .

Let In t rans i t ive he Mainverb
<subcat f i r s t cat> = NP
<subcat r e s t > = end
<head t r ans argl> = <subcat f i r s t head trans).

Let Raising be <subcat f i r s t ca t> = WP
csubcat r e s t f i r s t ca t> = VP
<subcat r e s t f i r s t subcat r e s t > = end
<subcat r e s t f i r s t subcat f i r s t > = <subcat f i r s t >
<subcat r e s t r e s t > = end.

Define Agentlesspassive as <out ca t> = <in cat,
<out subcat, = <in subcat r e s t >
<out head agreement) = < i n head agreement)
<out head a=> = <in head a=>
<out head t r ans> = <in head t rans>
<out head form> = passiveparticiple.

. . .--7

. B ,
-==-====---=====- Lexicon . . . - -- - -- - -- - , , , _ _ - _ _ ---=--=-=-

Yard uther:

<cat> = np
(head agreement gender) = masculine
<head agreement person> = t h i r d
<head agreement number> = s ingular
<head t rans> = uther.

Yord cornsall :

<cat> = np
<head agreement person> = t h i r d
<head agreement number, = singular
<head t rans> = cornsal l .

Yord knights:

<cat> = nom
<head agreement gender> = masculine
<head agreement person> = t h i r d
<head agreement number> = p lu ra l
<head t rans> = knights.

Word)might:

<cat> = nom
<head agreement gender> = masculine
<head agreement person> = th i rd
<head agreement number> = singular
<head trans> = knight.

Word a :

<cat> = det
<head agreement number> = singular.

Word sleeps: Int ransi t ive Thirdsing
<head t rans pred> = sleep.

Word sleep: In t rans i t ive Plural
<head t rans pred> = sleep.

Word storms: T r a n s i t ~ v e Thirdsing
<head t rans pred> = storm.

Word stormed: Transit ive AgentlessPassive
<head t r a n s F e d > = storm.

Word is: Raising Thirdsing
(subcat r e a t f i r s t head form> = passivepar t ic iple
<head t rans> = <subcat r e s t f i r s t head t rans>.

The following is the DCG produced by P-PATR'for the foregoing grammar:

null ([cat: det .
lex: -7973.
sense: -7978,
head: [form: -8072.

agreement: Cperson: -8117.
number: plural.
gender: -81271 ,

trans: -8082,
aux: -80871.

subcat: -79881).

lc(Ccat: np.
ler: -8231.
sense: -8236,
head: -8241.
subcat: -82461,
-8691 ,-8746.-8693)-->

dom([cat: vp,
l a : -8179.
sense: -8184,

head: [form: f i n i t e ,
agreement: -8491.
t rans: -8496.
aux: -85011.

subcat: [f i r s t : [cat: up.
lex: -8231.
sense: -8236,
head: -8241,
subcat: -82461 .

r e s t : endl l .
-8686).

lc([cat : s .

lex: -8283.
sense: -8288,
head: [form: f i n i t e ,

agreement: -8491.
t rans: -8496.
aux: -85011.

subcat: -82981 .
-8691 .s(-8746 .-8686) ,-8693).

l c ([ca t : det ,
lex: -8855.
sense: -8860.
head: -8813.
subcat: -88703,
-9156,-9211.-9158)-->

doon(Ccat: nom.
la: -8803.
sense: -8808.
head: -8813.
subcat: -88181,
-91511,

lc(Ccat: np.
la: -8907.
sense: -8912.
head: -8813,
subcat: -89221.
-9156,np(-9211,-9151) ,-9158).

lc([cat : nom.
lex: -8803.
sense: -8808.
head: Cform: -9261.

agreement: [person: -9267.
number: p lural .
gender: -92691.

t rans : -9259,
aur: -92711.

subcat: -88183.
-9283,-9338.-9285)-->

lc(Ccat: np,
lex: -8907.
sense: -8912.
head: [form: -9261.

agreement : [person: -9267.
number: p lu ra l .
gender: -92691.

t r ans : -9259.
aux: -92711.

subcat: -89221.
-9283,np(-9338) .-9285).

lc(Ccat: v .
lex: -9394.
sens?: -9399,
bead: -9404.
subcat: -94091 .
-9687.-9742.-9689)-->

lc(Ccat: vp,
lex: -9446,
sense: -9451.
head: -9404.
subcat: -94091 .
_9687,vp(-9742) .-9689).

lc(Ccat: vp.
lex: -9798.
sense: -9803,
head: -9808.
subcat: Cf i r a t : -10053.

r e s t : [f i r s t : -286.
r e s t : -10141111.

~10472,~10527,~10474)-->
do~n(-286,-10467).
lc(Ccat: vp.

lex: -9850,
sense: -9855.
head: -9808,
subcat: If irst : -10053.

r e s t : ~1014111.
-10472.vp(-10527 .-lo4671 .-10474).

lex(uther . [cat: np.

lex: uther.
sense: uther l .
head: [form: -10838.

agreement: [person: th i rd .
number: singular,
gender: masculine] .

trans: uther.
aux: -108481.

eubcat: -108501 1.

lex(cornwal1. Ccat: up.
lex: cornwall.
sense: cornwalll.
head: [form: -10838.

agreement: [person: th i rd .
number: aingular.
gender: -108461.

t rans : cornwall.
am: -108481.

aubcat: -108501 1.

lex(Imighte. Ccat: no..
lex: knights.
sense: Lnightal.
head: [form: -10838.

agreement: [person: t h i rd ,
number: plural .
gender: masculine] ,

trans: Imighta.
am: -108481.

subcat: -108501 .
lex(knight. Ccat: nom.

lex: Imight,
aenee: Lnightl.
head: Cfonn: -10838.

agreement: [person: t h i rd ,
number: singular ,
gender: masculine]

t rans : knight.
aux: -108481.

subcat: -108501 1 .
lex(a.Ccat: det ,

lex: a ,
sense: a l .
head: [form: -10838.

agreement: [person: -10844.
number: s ingular .
gender: -108461.

t r ans : -10836.
aux: -108481.

subcat: -108501) .

lex(s1eeps. Ccat: v .
lex: s leeps .
sense: s l e e p s l .
head: [form: f i n i t e .

agreement: -10846.
t r a n s : Cpred: s l eep ,

argl : -10840.
arg2: -108421.

aux: f a l se l .
subcat: [f i r s t : Ccat: np.

lex: -10966.
sense: -10964.
head: [form: -10956.

agreement: [person: th i rd .
number: s ingular .
gender: -113221 .

t r ans : -10840.
aux: -109601.

subcat: -109621.
r e s t : endl l) .

lex(s leep, Ccat: v,
lex: s leep.
sense: s l eep l .
head: [form: -10844.

agreement: -10846.
t r ans : Cpred: sleep.

a rg l : -10840,
arg2: -108421.

aux: f a l se] ,
subcat: [f i r s t : Ccat: np.

lex: -10966,
sense: -10964.
head: If-: -10956,

agreement: [person: -11170.
rider: p l u r a l ,
gender: -111721.

trana: -10840,
aux: -109601.

subcat: -109621.

r e s t : endl l) .

lex(storms, Ccat: v,
lex: storms.
Sense: stormsl.
head: [form: f i n i t e ,

agreement: -10846.
t rans : [pred: storm.

argl : -10840.
arg2: -108421.

aux: f a l s e l .
subcat : . [f i r s t : Ccat : np.

lex: -10966,
sense: -10964.
head: [form: -10956.

agreement: [pe r~on : t h i r d ,
number: eingular.
gender: -113661,

t r ans : -10840.
aux: -109601.

subcat: -109621,
r e s t : [f i r s t : Ccat: up.

lex: -10988,
sense: -10986.
head: [form: -10978.

agreement: -10980,
trans: -10842,
aux: -109821.

subcat: -109841,
r e s t : e n d l l l) .

lex(stormed. [cat: v.
lex: -10854.
sense: -10852.
head: If orm: paasiveparticiple.

agreement: -10846,
trans: [pred: storm,

argl : -10840.
arg2: -108421.

aux: f a l s e l .
subcat: [f i r s t : Ccat: np.

lex: -10988,
s-e: -10986,
head: [form: -10978,

agreement: -10980.
t r ans : -10842.
aux: -109821.

subcat: -109841.
r e s t : endl l) .

lex(is,Ccat: v.
lex: is.
sense: isl,
head:

Cform: f i n i t e ,
agreement: -10840.
tr-: -10836.
a u : -108421.

subcat:
If irst :

Ccat: np.
lex: -10984,
sense: -10982,
head:

Cform: -11256.
agreement:

[person: th i rd .
number: singular.
gender: -112641.

t rans: -11254.
a u : -112661,

aubcat : -109801,
res t :

Cf irst :
Ccat: vp.
lex: -10866.
sense: -10864.
head:

Cform: passiveparticiple.
agreement : -10858.
t rans: -10836,
am: -108601.

subcat :
Cf irst :

Ccat: np,
lex: -10984.
sense: -10982.
head:

[form: -11256.
agreement:

Cperean:third,
number: singular.
gender: -112641.

trapa: -11254,

aur: -112661.
subcat: -109801.

r e s t : end l l ,
r e s t : e n d l l l) .

C Selected Code

% nodule: CDIIPILEPATR.PL
% Author: Susan B. Hirsh
% Purpose: Compile a clausal f o m of a PATR-I1 grammar into a
7. DCG.

% load all supplemental modules

:- ensure-loaded(readrules) . %read in PATR-I1 rules
:- ensure-loaded(parameters) . % handle parameter statements
:- ensure-loaded(paths 1. % generate feature information
:- ensure-loaded(epsilons). % precompile epsilon rules
:- ensure-loaded(compilegrammar 1. % compile the PATR-11 grammar
:- ensure-loaded(unify). % unify PATR-I1 equations
:- ensure-loaded(compilelex 1. % precompile lexical entries

% External predicates :
%
%
% nodule CDWILEGRAMHm.PL -
%
% compile-grammar13 -
% compile PATR-I1 pammar into a DCG.
%
%
% nodule COHF'ILUEX.PL
%
% compile-led1 -
% execute each laical entry in the database.
7.
%
% nodule EPSIIDBS.PL
%
% epsilons/Z -
% precompile epsilon rules.
Z
%
% nodule P W T E R S . P L
%
% parameter/l -
% process all parameter statements.
%
%

X nodule PATHS.PL
%
% pa th42 -
% generate a l l feature information.
X
%
% nodule PATRLIBRARY.PL
X
X file_name/3 -
% create a new f i l e name with a new ending.
% mite-clause/2 -
% write clause t o output stream in Prolog clause format.
X
X
% nodule PATRSUPPORT.PL
X
X format-s ta tdo -
% output s t a t i s t i c s on runtime.
% set-timer/O -
% rese t runtime timer.
X
%
X nodule READFCJLES.PL
X
X input-rules/2 -
X Read in PATR-I1 ru les from .PTRP f i l e .

X
X compilepatr(F i le)
X
% Input :
X Fi le - name of input f i l e (must have .PTRP extension)
X
X
% Take a list of PATR-I1 ru les produced by READPATR.PL and
% converr them in to a definite-clause grammar (DCC).

compilepatr(F i le :-
format('-nCompilhg ...- n' . 1. X output current s ta tus
input_rules(F i le , Rules 1, % read in grzwmar rules
output-rules (Fi le . Rules 1. % convert ru les t o DCC

y--
%
% output-rules(F i l e . Rules 1
%
% Input :

% F i l e - name of input f i l e
% Rules - list of PATR-I1 r u l e s
%
%
% Convert PATR-I1 r u l e s in to a DCC and output t h e DCC.

output-rules(F i l e . Rules :-
file-name(F i l e . ".dcg" . Output 1. % output f i l e is File.dcg
open(Output. write. Outstream 1. % open output f i l e
% i n se r r l i n e i n t o DCC t o include w t i m e support
write-clause((:- ensure-loaded(patrsupport 1 1.

OutStream 1.
compile-rules(Rules. OutStream 1. X compile PATR-I1 r u l e s
c lose(Outstream 1 . % close output f i l e
(load-parser(yes 1 -> X is DCC t o be loaded
load-dcg(Output) % load t h e DCC
I t r u e 1. % do nothing

i
% compile-rules(Rules. OutStream)

X
% Input :
Z Rules - list of PATR-I1 r u l e s
% Outstream - current output stream
Z
%
X Compile PATR-I1 r u l e s i n t o a DCC.

compile-rules(Rules, OutStream 1 :-
set-timer. % s e t runtime t imer
parameter(Rules. OnlyRules. Outstream). X handle parameters
paths(GnlyRules. Outstream 1, % ge t f ea tu re information
X precompile epsilon r u l e s
epsilons(DnlyRules. OutStream 1.
compile-grammar(OnlyRules, Rules. OutStream 1.1 make DCC
% execute l e x i c a l e n t r i e s

% output compile s t a t i s t i c s

I.

% load-dcg(Output I
%
% Input :

% Output - name of output f i l e
%
%
% Load DCC into R o l o g database.

load-dcg(Output I :-
format('-Loading ...- n' .O I .% output current s tatus
ensure-loaded(Output I .

% nodule: COUP1LEPATR.PL
Z Submodule: READRLLES.PL
% Author: Susan 8 . Hirsh
% Purpose: Read in a list of PAIR r u l e s

% External predicates :
%
7.
% nodule PATRLIBRARY.PL
% .
% file_name/3 -
% create a neu f i l e name with a new ending.

%
X input-rules(Fi le . Rules 1
%
% Input :
% F i l e - input f i l e name
%
% Output :
% Rules - list of a l l PATR-I1 r u l e s from input f i l e
%
%
% Read in PATR-I1 r u l e s from input f i l e and put i n t o a list.

input-rules(F i l e . Rules 1 :-
seeing(I n f i l e 1. Z save current input f i l e
f ile-name(F i l e , ".ptrp8'. Input 1. % input f i l e is Fi le .p t rp
see(Input 1, !l open input f i l e
read-rules(Rules 1. % read in the r u l e s
seen. '1 close input f i l e
see (I n f i l e 1. X r e s to re input f i l e

%
% read-rules(Rules 1
%
% Output :
X Rules - list of PATR-I1 r u l e s

%
% Read in a list of PATR-I1 rules.

read-rules(Rules) :-
read(Rule 1. % read in the first rule
read-more-rules(Rule, Rules 1. % read in the rest

y--
%
% read-more-rules(PreviousRules. NewRules)
%
% Input :
% PreviousRules - list of PATR-I1 rules as it is being
% built up
%
% Output :
% HewRules - list of PATR-I1 rules
%
% Read in a list of PATR-I1 rules.

% stop at the end of the file
read-more-rules(end-of-file. 0) :- !.

% keep reading until the end of the file
read-more-rules(Rule.[Rule I Rules 1) :-

read(NewRule 1. % read in a PAX+-I1 r u l e

read-more-rules(HewRule. Rules). % read in the rest

% Module: COIIPILEPATR.PL
X Submodule: PAIUWETERS.PL
% Author: Susan 8 . Hirsh
% Rupose: Record t h e information from t h e parameter statements.

% External predicates :
X
%
X Wodule PATRLIBRIIRY.PL
%
X mite-clause12 -
% m i t e clause t o output stream in Prolag clause format.

X
% parameter(Rules. He~Rules)
X
X Input :
% Rules - list of PATR-I1 r u l e s
%
X Output:
% HesRules - list of PAIR-I1 r u l e s minus parameter statements
%
X
X Handle parameter statements f h t , as they must appear only a t
% t h e top of t h e f i l e .

Z handle start symbol
parameter([parameter(s t a r t (Symbol)) I Rules I . HeoRules.

OutStream 1:-
asse r t (start(Symb01) 1. % a s s e r t start symbol
write-clause((start(Symb01)). OutStream 1, X m i t e t o output
parameter(Rules, BeoRules. Outstream 1. X handle o the r s

% keep t rack of a t t r i b u t e order
parameter(C parameter(a t t r i b u t e s (L i s t)) I Rules I . LoRules ,

Outstream):-

% record t h e correc t order
record-order(L i s t , 1).
L bandle o ther parameter s t m t a
pasameterc Rules. BeoRules. Gutstream).

% ignore r e s t r i c t o r
parameter(parameter(r e s t r i c t o r (-List) I Rules I . HevRules.

Outstream) :-
parameter(Rules. HesRules, Outstream).

% ignore t rans la t ion
~ a r a m e t e r ([~aramete r (t r ans la t ion (-List I I I Rules 1. HevRules.

OutStream I :-
parameter(Rules, HevRules. OutStream I .

% no more parameter statements - re turn list minus parameters
parameter(Rules. Rules, -0utStream I .

% record-order(At t r ibutes , Place)
%
% Input :
% Attr ibutes - list of a t t r i b u t e s in the order in which they
% are t o appear
% Place - posi t ion in the list of t h e current a t t r i b u t e
%
%
% Record the p r in t order of each att;ibute.

% record the posit ion of each a t t r i b u t e
record-order(C Attr ibute I At t r ibu tes I . Place I :-

% a s s e r t f o r use in pr in t ing
a s s e r t (print-order(Attribute.PlaceI 1.
% inaement posit ion
NevPlace is Place + 1,
% go on t o t h e n e r t a t t r i b u t e
record-order(Attr ibutes. Hewplace 1.

% no more a t t r i b u t e s
record-order(0. -Place I .

Z nodule: COWILEPATR.PL
% Submodule: PATHS.PL
% Author: Susan 8 . Hirsh
% P q o s e : Compile a l l information on posi t ion and order of
% the fea tures .

Z External predicates :
%
%
% Hcdule PATRLIBRARY .PL
%
% write-clause12 -
% wri te c lause t o output stream in R o l o g clause format.
%
Z
% nodule PATRSUPPORT.PL
%
% print-order12 -
Z t h e p r in t ing order of t h i s f ea tu re in t h e f ea tu re s t ruc tu re .

Z
% paths(Rules. Gutstream)
%
% Input :
% Rules - list of PATR-I1 r u l e s
Z Outstream - current output stream
%
%
% Generate f o r each a t t r i b u t e a list of t h e fea tnres t h a t can
% follow it and a s s e r t t h i s information i n t o t h e d a t a base
% and output i n t o output f i l e .
%
% For example :
%
% The r u l e
% rule(NF'.C~].CC~,catl-n~, ~~~~~~~~~~~~~~~~~~C~.bodyll)
%
% would produce t h e list :
Z feature-order(main. Icat:X.body:n, U,Yl)
%
% where t h e a t t r i b u t e 'main' is a d m y a t t r i b u t e used t o designate
% t h a t a f e a t u r e following it saa t h e f i r s t f ea tu re in a path

% specif icat ion.

paths(Rules. OutStream) :-
% create lists of V a r s . Bindings, and Pa i r s
type-inf o (Rules. C Hain 1, Types, C main=Hain 1. Bindings. .

Pai r s).
calc-types (Pai r s) . % make pa i r s in to paths
t a i l s (Types), % get r i d of t a i l variables
% asse r t paths i n t o database and m i t e in to output f i l e
output-paths (Bindings, OutStream) .

I,
X type-info(Rules. OldTypes, Types. OldBindings. -Bindings.
% OldPaths. Paths)
X
% Input :
% Rules - lbt of r u l e s in PATR-I1 format
X OldTypes - types found so f a r
X OldBindings - bindings found so f a r
% OldPaths - paths found s o f a r
X
% output :
X Types - lbt of types
X Bindings - lbt of bindings
% Paths - list of paths
%
7.
X Extract from each r u l e t h e features used in t h a t ru le . Erom
X t h i s feature information compile three di f ferent lists :
%
% Types : a l i a t of var iables associated with the features
% Bindings : a list containing information as t o which a t t r ibu tes
% are bound t o which variables.
X P a i r s : a l i a t specifying which features can follow which others

% no more r u l e s
type-info(0, Types, Types, Bindings. Bindings. Pa i r s , Pairs).

% ex t rac t in fo from each r u l e
type-info(I: Rule I Rules 1, Types, Rtypes, Bindings. Rbindings.

Pairs . Rpaira) :-
X fea tu res a r e contained in t h e unif icat ion equations of a r u l e
unifs(Rule. h i f a , Type) . X get f ea tu re information

% process the f ea tu re information
info(Type. Unifs, Types, Htypes. Bindings. Hbindings, Pai rs .

Hpairn 1.
% do the r e s t of the r u l e s
type-inf 0 (Rules, Htypes. Rtypes. Hbindings, Rbindings. Npaire,

Rpairs) .

I.
% unif s(Rule, Unifs, Type)

%
% Input :
% Rule - current PATR-I1 r u l e
% Type - what kind of r u l e t h i s is
%
% Output :
% Unifs - list of unif ica t ions f a r t h a t r u l e
%
%
% Extract the unif ica t ion equations from the rule .

% grammar r u l e
unife(rule(-Lb,-Rhs,Unifs). Unifs. r u l e 1.

% l e x i c a l entry
unifs(lex(-Yord.Unifa) . Unifs, l e x 1.

% l e x i c a l template
un i f s (template(-Hane,Unifa). Unifs, l ex 1.

% l e x i c a l r u l e
unifsc lexmle(-Name.-1nFS.-0utFS.hifs). Unifs. r u l e 1.

% info(Type, Unifs. OldTypes, Types. OldBindings. Bindings.
% LlldPaths. Paths)
%
% Input :
% Type - t h e type of r u l e it is
% Unifs - liet of un i f i ca t ions f o r t h a t r u l e
% OldTypes - list of types s o f a r
% OldBindings - list of bindings so f a r

% OldPaths - list of paths so f a r
%
% output :

% Types - list of types
% Bindings - list of bindings
% Paths - list of paths
%
%
% Extract feature information from the unif icat ion equations.

% no more unif icat ions in t h i s r u l e
in fo (- A l l . [I. Types. Types. Bindings. Bindings, pairs,

Pa i r s 1.

% ignore template and l e x i c a l r u l e names, as these fea tu res a re
% handled in template o r r u l e de f in i t ions
info(Kind. C Template1 T 1, Types, Rtypes. Bindingsi Rbindings,

Pa i r s , Rpairs) :-

atomic(Template 1. !. % t h i s is a template o r l e x i c a l r u l e
% go on t o t h e next unif icat ion equation
in fo (Kind, T. Types, Rtypes. Bindings, Rbindings, Pairs ,

Rpairs 1.

% f o r r u l e s :

% handle unif icat ions of t h e form : Path1 5 Path2
% E.G.,
% <S head> = <VP head>
info(ru le . C C - V a r l I Featuresl 1 5

C 9 a r 2 I Features2 1 I T I,
Types, Rtypes, Bindings, Rbindings, Pairs . Rpairs) :-
% unify t h e f i n a l feature values so t h a t paths can unify
add-paths(Features l , Types, Ntypes. Bindings, Windings. Pairs .

N p a h , m a i n , Last) .
add-paths(FeaturesZ. Ntypes, Utypes, Nbindings. Hhindings.

Npairs , Hpairs , m a i n . Last) ,
% go on t o t h e next un i f i ca t ion equation
info(r u l e , T. Utypes. Rtypes, Hhindings, Rbindings, Hpairs.

Rpairs).

% handle unif icat ions of t h e form : Path = val
% E.G..
% <X ca t> = np
info(ru le . C [. - V a r I Features]=Atom I T I. Types, Rtypes.

Bindings. Rbindings, Pairs . Rpairs) :-
atomic(Atom).

% add feature information
add-pathS(Features. Types. Htypes, Bindings, Hbindings. Pairs .

Npairs. m a i n . - l a s t) .
% go on t o next unif icat ion
info(rule. T, Ntypes. Rtypes. Hbindings, Rbindings. Hpairs,

Rpairs 1.

% f o r l ex ica l e n t r i e s o r templates :

% handle unifications of the form : Path = val

% E.C.,
% <cat> = np

info(lex. C Features=Atom IT 1 . Types. Rtypes, Bindings.
Rbindings. Pairs . Rpairs) :-

atomic(Atom) . ! .
% add feature information
add-paths(Features. Types, Ntypes. Bindings, b i n d i n g s , Pa i r s ,

Npairs, main. -last 1,
7. go on t o next unification
info(lex. T. Ntypes. Rtypes, Kbindings. Rbindinge. Hpairs,

R p a i r s 1.

% handle unif icat ions of the form : Path1 = Path2
% E.C..
% &ead> = <head>
info(l e x , C Featuresl-Features2 I T 1, Types. Rtypes. Bindings.

Rbindings. Pairs. Rpaira) :-
% unify t h e final feature values so t h a t paths can unify
add-paths(Features1 . Types. Htypes, Bindings, b ind ings . Pairs .

Npairs. m a i n , Last 1,
add-pat& (Featuresl . Ntypes, Htypes. Windings. Hbindings .

Npairs, Hpairs, main, Last 1.
in fo(lex. T. Htypes, Rtypes. Hbindings, Rbindings. Hpairs.

Rpairs) .

.;
% add-paths(Features. OldTpes, Types, OldBindings. Bindings.
7. Oldpairs. Pairs. Place, last)

X
% Input :
% Features - list of features in one unif icat ion equation
X OldTypes - list of types so f a r
% OldBindings - list of bindings so f a r

X OldPairs - list of p a i r s so f a r
X Place - previous f ea tu re
X Last - V a r value of l a s t f ea tu re on t h e list
X
X Output :
X Types - list. of types
X Bindings - list of bindings
X P a i r s - list of p a i r s
r
7, Create the three list of Types. Bindings and Pa i r s a s described.

% l a s t fea ture , j u s t r e t u r n var iable f o r l a t e r un i f i ca t ions
add-paths(. Types, Types. Bindings, Bindings. Pa i r s . P a i r s ,

Place. Last 1:-
X get var iable equivalence of t h i s a t t r i b u t e
search(Place. Bindings, Last 1.

% add an t h e Typea. Bindings and P a i r s
add-paths(C Feature I Features 1, Types. Rtypes. Bindings,

Rbindings, P a i r s , Rpairs. Place. Last) :-
X g e t var iable value
search(Place , Bindings, V a r).
X get Type and Binding information
checkpaths(Feature, Types, Htypes, Bindings, Hbindings 1,
X g e t p a k information
add-pairs(V a r . Feature. P a i r s . Npairs 1,
% handle next a t t r i b u t e
add-patha(Features. Ntypes. Rtypes, Hbindings, Rbindings, Npaira.

R p a h . Feature. Last) .

%
X search(Place. Bindings, V a r)
X
X Input :
X Place - current a t t r i b u t e t o look up
X Bindings - l i n t of bindings
X
X output :
% V a r - R o l o g V a r value of t h e a t t r i b u t e
X
X
% Look up t h e V a r value of t h e current a t t r i b u t e on the Bindings
X l i s t .

% s top when you f ind t h e a t t r i b u t e
search(Place, [Place=Var I -Bindings I . V a r 1 :- !.

% keep searching u n t i l you f i n d it.
search(Place. C -Binding I Bindings 1. V a r 1 :-

search(Place. Bindings. V a r 1.

h

% checkpath(Feature. Oldtypes. Types. Oldbindings, Bindings 1
%
% Input :
% Feature - current a t t r i b u t e
% OldTypes - list of types
X Oldeindings - list of bindings
X
% Gutput :
% Types - new list of types i f a t t r i b u t e was added
% Bindings - new list of bindings i f a t t r i b u t e was added
%
X
% Check if an a t t r i b u t e is bound in the B i n d i q s list and add it
X i f it i s n ' t already there .

% add a t t r i b u t e i f it i a not the re
checkpath(Feature. Types. C V a r I Type8 1, .

C Feature-Var I 1.

% i f it is there . do nothing
checkpath(Feature, Types. Types. C Feature=Var I B i n d i q e I .

C Feature=Var I Bindings 1 1 :- !.

% i f it i s not the re , keep t ry ing the r e s t of the list
checkpatha(Feature. Types. Rtypes. [Binding I Bindings I ,

Binding I Rbindinge I 1 :-
checkpathsc Feature, Types. Rtypes. Bindings, Rbindings 1.

X add-pairs(Var, Feature. OldPairs. Pa i r s 1
%

% Input :
% V a r - VK t o add
% Feature - a t t r ibu te t o add .
Z Oldpairs - previous list of pa i r s
%
% output :
% Pai r s - new list of pa i r s
X
X Add a VK and a Feature t o Pairs list.

add-pairs(V a r . Feafure. Pairs. [V a r : Feature I Pa i r s I).

X
% calc-types(Pairs)
X
% Input :
% Pai r s - list of p a i r s
%
%
% h c e a l l of t h e Pairs havq been done, go throught the Pa i r s l i s t
% and add all pairs t o the one preceding them.
Y
X For example :
% Pairs si l l look l i k e CCA:heabl. h , c a t l l
% and nos A sill look l i k e bead.cat1

% add pa i r t o list
calc-types([Type : Label I Pa i r s .I 1:-

i n s e r t (Label, Type), 1 unify it into the Prolog variable
calc-types(Pairs 1. % go t o nest pai r

% no more pa i r s
calc-types(1.

% insert (Feature. Variable)
%
% Input :
X Featme - current a t t r i b u t e
% Variable - variable t o insert value in to

